第579章 液态金属冷却法(2/3)

“只不过涡扇10这个叶片的尺寸确实有点太大,外形又比较复杂,所以只能慢工出细活,这也是第三代航空发动机生产效率总体偏低的主要原因……”

显然,他是以为常浩南对他们的生产效率不满意。

然而后者却摆了摆手:

“不,我的意思是说,既然冷端靠热辐射进行冷却的效率比水冷盘低得多,那为什么不干脆一点,把整个工件都用液体进行冷却?”

“啊?”

马立平整个人直接愣住,好一会之后才艰难开口:

“全都用液体,那不成淬火了?”

“而且水冷对于正在生长的晶体来说,冷却效果过于好了,突然接触到低温的晶体会直接不受控制地疯涨,根本无法保证晶型,而且……”

他的话还没说完,就被差点绷不住的常浩南打断了:

“当然不可能是用水,水的凝固点和沸点之间只差100℃,对于冷端温度控制来说区间太窄了,根本没办法操作。”

“我的意思是,用导热系数大、沸点高、凝固点低、热容量大的液体,把抽拉出来的叶片根部直接浸泡在里面,用热传导进行强化冷却,这样整个工件的温度梯度可以又大又稳定,结晶的速度和晶体质量也能同时得到保障。”

“沸点高、凝固点低,还要热容量大……”

马立平双眼望天低思索了一下。

他本来想说哪可能有这么神奇的东西。

但很快就意识到自己想错了。

有一个大类的材料都符合这个要求,只不过它们通常并不被认为是“液体”罢了。

“那就只有……液态金属?”

常浩南点头:

“我初步想一想的话,最好是用铝或者锡,就像你说的,凝固点也不能太低,否则骤然遇到强冷对于晶体生长也有不利影响。”

这一次,马立平没有马上给出回应,而是在机柜前来回踱着步子,显然是在思索这个技术路线的可行性。

“常总,如果是用液态金属,那需要控制的可操作变量就更多了,尤其是冷却速度提高的情况下。”

几分钟后,他重新停住脚步,看向常浩南:

本章未完,点击下一页继续阅读。